Onset and organ specificity of Tk2 deficiency depends on Tk1 down-regulation and transcriptional compensation.

نویسندگان

  • Beatriz Dorado
  • Estela Area
  • Hasan O Akman
  • Michio Hirano
چکیده

Deficiency of thymidine kinase 2 (TK2) is a frequent cause of isolated myopathy or encephalomyopathy in children with mitochondrial DNA (mtDNA) depletion. To determine the bases of disease onset, organ specificity and severity of TK2 deficiency, we have carefully characterized Tk2 H126N knockin mice (Tk2-/-). Although normal until postnatal day 8, Tk2-/- mice rapidly develop fatal encephalomyopathy between postnatal days 10 and 13. We have observed that wild-type Tk2 activity is constant in the second week of life, while Tk1 activity decreases significantly between postnatal days 8 and 13. The down-regulation of Tk1 activity unmasks Tk2 deficiency in Tk2-/- mice and correlates with the onset of mtDNA depletion in the brain and the heart. Resistance to pathology in Tk2 mutant organs depends on compensatory mechanisms to the reduced mtDNA level. Our analyses at postnatal day 13 have revealed that Tk2-/- heart significantly increases mitochondrial transcript levels relative to the mtDNA content. This transcriptional compensation allows the heart to maintain normal levels of mtDNA-encoded proteins. The up-regulation in mitochondrial transcripts is not due to increased expression of the master mitochondrial biogenesis regulators peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and nuclear respiratory factors 1 and 2, or to enhanced expression of the mitochondrial transcription factors A, B1 or B2. Instead, Tk2-/- heart compensates for mtDNA depletion by down-regulating the expression of the mitochondrial transcriptional terminator transcription factor 3 (MTERF3). Understanding the molecular mechanisms that allow Tk2 mutant organs to be spared may help design therapies for Tk2 deficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diverging substrate specificity of pure human thymidine kinases 1 and 2 against antiviral dideoxynucleosides.

The two thymidine (dThd) kinases in human cells, the cytosolic, S-phase-specific TK1 and the mitochondrial, constitutively expressed TK2 were purified to homogeneity as judged from sodium dodecyl sulfate-gel electrophoresis. The substrate specificity of TK1 and TK2 toward natural substrates and important nucleoside analogues was compared. With TK1, the Km values for 5-fluorodeoxyuridine (FdUrd)...

متن کامل

siRNA knockdown of mitochondrial thymidine kinase 2 (TK2) sensitizes human tumor cells to gemcitabine

Nucleoside metabolism enzymes are determinants of chemotherapeutic drug activity. The nucleoside salvage enzyme deoxycytidine kinase (dCK) activates gemcitabine (2', 2'-difluoro-2'-deoxycytidine) and is negatively regulated by deoxycytidine triphosphate (dCTP). Reduction of dCTP in tumor cells could, therefore, enhance gemcitabine activity. Mitochondrial thymidine kinase 2 (TK2) phosphorylates ...

متن کامل

DPYD, TYMS, TYMP, TK1, and TK2 Genetic Expressions as Response Markers in Locally Advanced Rectal Cancer Patients Treated with Fluoropyrimidine-Based Chemoradiotherapy

This study is to investigate multiple chemotherapeutic agent- and radiation-related genetic biomarkers in locally advanced rectal cancer (LARC) patients following fluoropyrimidine-based concurrent chemoradiotherapy (CCRT) for response prediction. We initially selected 6 fluoropyrimidine metabolism-related genes (DPYD, ORPT, TYMS, TYMP, TK1, and TK2) and 3 radiotherapy response-related genes (GL...

متن کامل

Four deoxynucleoside kinase activities from Drosophila melanogaster are contained within a single monomeric enzyme, a new multifunctional deoxynucleoside kinase.

In mammalian cells, there are three pyrimidine nucleoside salvage enzymes with the capacity to phosphorylate all four deoxynucleosides, the two thymidine kinase isoenzymes, TK1 and TK2, and the deoxycytidine kinase, dCK. TK1 is cell cycle-regulated; TK2 is expressed constitutively and can phosphorylate deoxycytidine to the same extent as thymidine. dCK phosphorylates deoxycytidine, deoxyadenosi...

متن کامل

Combining small interfering RNAs targeting thymidylate synthase and thymidine kinase 1 or 2 sensitizes human tumor cells to 5-fluorodeoxyuridine and pemetrexed.

Thymidylate synthase (TS) is the only de novo source of thymidylate (dTMP) for DNA synthesis and repair. Drugs targeting TS protein are a mainstay in cancer treatment, but off-target effects and toxicity limit their use. Cytosolic thymidine kinase (TK1) and mitochondrial thymidine kinase (TK2) contribute to an alternative dTMP-producing pathway, by salvaging thymidine from the tumor milieu, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 20 1  شماره 

صفحات  -

تاریخ انتشار 2011